The Future of Propulsion Highlights from ISABE 2017

Belo Horizante, 9-14 September 2018

Professor Ric Parker

with Ibrahim Eryilmaz

President ISABE

Cranfield University

International Society for Air Breathing Engines

Agenda

- ISABE 2017, Manchester
- The Future of Propulsion
 - Commitments
 - Enabling Technologies
- ISABE 2017 Highlights
 - Words from Keynotes
 - Words from Presenters
- Electric propulsion (Rolls-Royce)
- Next Conference ISABE 2019, Canberra

ISABE 2017, Manchester - Economy, Efficiency & Environment

Manchester Central Convention Complex

Hosted by Rolls-Royce and UK Organising Committee

Co-hosted by Cranfield University

Supported by

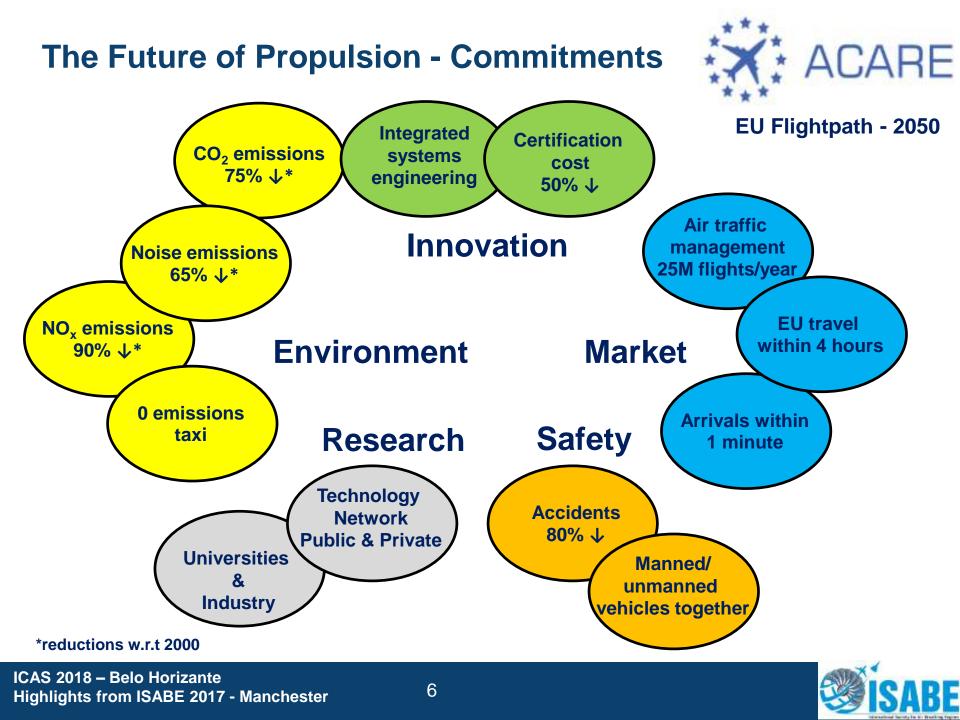
R

The city where The Honourable **Charles Rolls met Sir Henry Royce**

Sponsored by

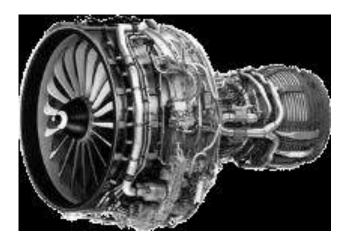
ISABE 2017, Manchester - Economy, Efficiency & Environment

- 370 registered participants
- 18 keynotes


ISABE 2017, Manchester - Economy, Efficiency & Environment

- Interactive parallel sessions
 - 248 papers
- Panel discussions + Q&A

The Future of Propulsion – Enabling Technologies


- UHBR engine sizing Integrity and installation challenges
- Cycle innovations variable cycles
- Manufacturing Additive manufacturing & fast prototyping
- Virtual engine design systems
- Integrated aircraft and propulsion system design
 - Boundary layer ingestion
- Electrification (Separate presentation)
 - More electric aircraft
 - Electric augmented
 - Hybrid electric
 - Electric propulsion

From Keynotes – Safran Aircraft Engines

2018 LEAP-1C entering into service

Certified by EASA & FAA

Powering COMAC 919

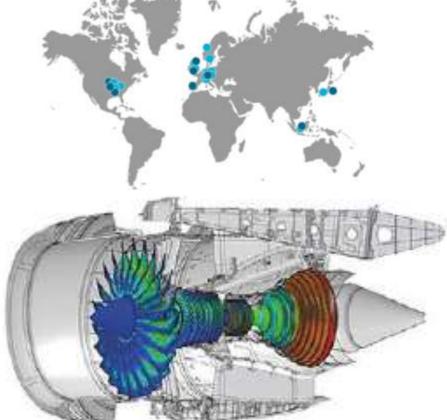
Narrow body, 2 engine aircraft

ICAS 2018 – Belo Horizante Highlights from ISABE 2017 - Manchester

By additive manufacturing

• 20% reduction in engine parts by 2025

Green taxiing[®]
2-4 % fuel burn reduction



From Keynotes – Rolls-Rovce

Global Partnership

- 31 University Technology Centres
- 14 Research Centres and other Partnerships

UltraFan® gearbox

• The world's most powerful gearbox has run to max. power

DaVinci

Design and Validate in the Computer Investment

• Less testing, better quality, lower cost

From Keynotes – Airbus

Existing product improvements – on track

- Design for Additive Layer Manufacturing
 - 5% waste material
 - up to 50% potential weight saving

Better integration and architecture – BLADE: Breakthrough Laminar Aircraft Demonstrator in Europe

2017 – Flight tests on Airbus A340

New configurations

Hybrid electric propulsion

Towards Urban Air Mobility

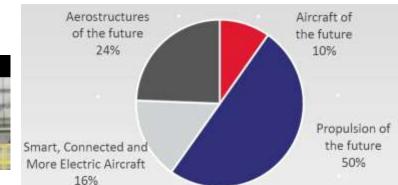
Pioneering role in opening the market

From Keynotes – Cranfield AIRC & DARTeC

- AIRC
 - A £35m investment by Cranfield, HEFCE, Rolls Royce and Airbus
 - Surrogate airframer for Rolls-Royce & surrogate component supplier for Airbus
- DARTeC
 - A £65m investment by Cranfield, HEFCE, Thales, SAAB, Boeing UK, Raytheon, Monarch Ltd

11

DARTeC - Digital Aviation Research and Technology ICAS 2018 – Belo Horizante Highlights from ISABE 2017 - Manchester AIRC - Aerospace Integration Research Centre


From Keynotes – Aerospace Technology Institute

UK Aerospace programme roles

ATI Portfolio by Value Stream

Impact of New Technologies – Case

Advanced Wing Assembly

- Right first tie assembly
- Cost & lead time reduction

Harsh Environment Electronics

 250 °C capable environment **AMRC Titanium Casting**

- World's largest Ti casting facility
- £15M investment

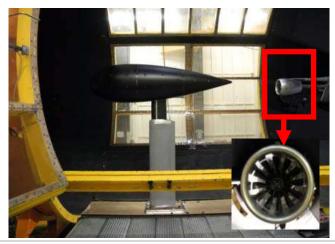
From Keynotes – Clean Sky Joint Undertaking

A public-private partnership- A focal point in European Aviation

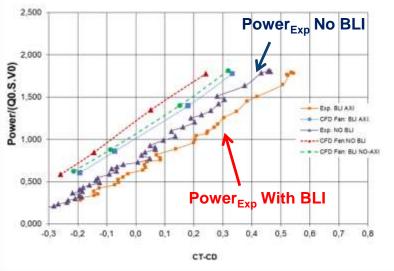
- 14 Industrial leaders & EU Commission
- €1.8Bn EU funding, 4B € total cost, >800 participants

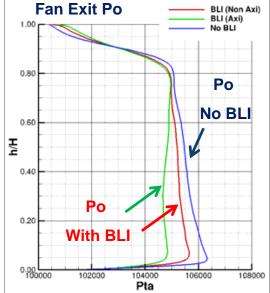
Contra-Rotating Open Rotor, SAFRAN

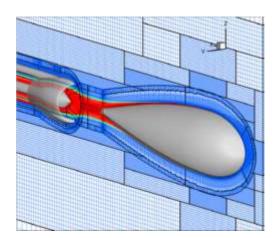
- Ground test demonstrator
- Compliant with the new noise standards
- Offering 30% ↓ in fuel burn compared to 2000


Geared turbofan demonstrator, MTU

- New systems for a more electric engine
- All electric VGV actuator

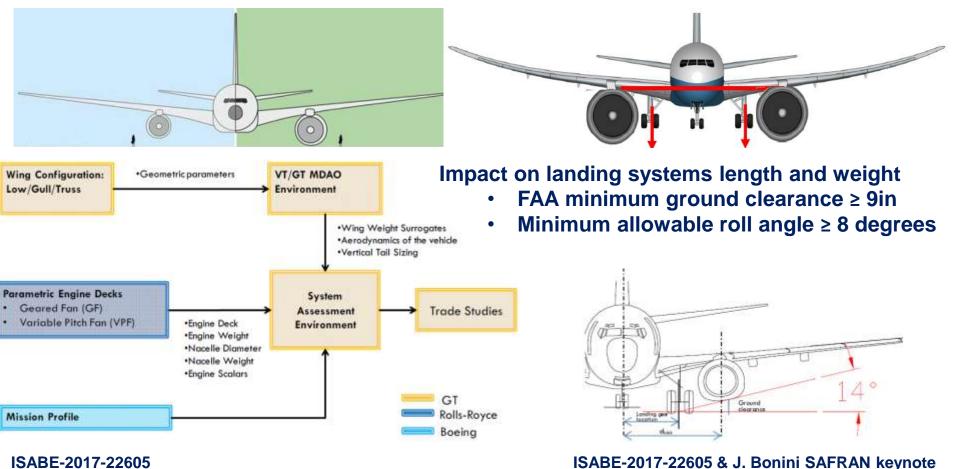

From Presenters – Boundary Layer Ingestion


View of the RAPRO2 BLI experimental system in the L1 wind tunnel - ONERA



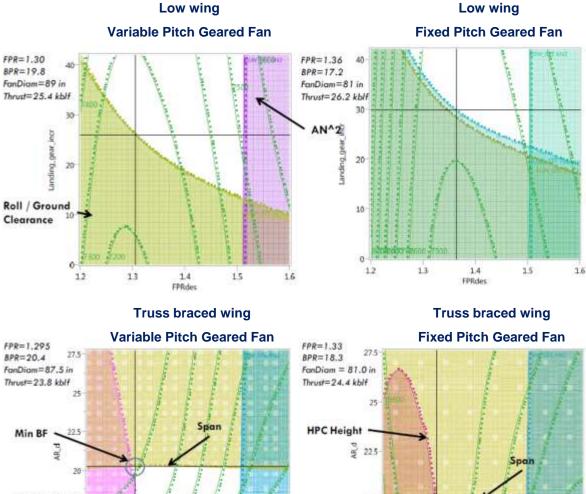
- Distorted fan flow
- Less drag on fuselage and nacelle
- BLI reduces global power needed
- Less fuel to drive the fan

Power coefficient as a function of the global axial force CT-CD


ISABE-2017-22536

From Presenters – UHBR Engine Sizing

Installation challenge, system sizing and synthesis


- **Optimized pylon & nacelle geometry and wing shape**
 - Straight (low) wing, gull wing, truss braced wing

ISABE-2017-22605

From Presenters – UHBR Engine Sizing

- VPF- No thrust reverser
- Less landing gear ↑ with a slimmer nacelle to accommodate UHBR
- opt. FPR ~1.3-1.35 VPGF < FPGF

High wing

•

۲

16

- No ground clearance constraint
 - High span gate compatibility issues
- Further fuel burn↓ opt.
 FPR<1.2

ISABE-2017-22605

ICAS 2018 – Belo Horizante Highlights from ISABE 2017 - Manchester

FPRde

HPC Height

1.35

14 145

FPRdes

1.5 1.55

13

125

20

Min BF

1.55

1.6

145 15

From Presenters – Manufacturing

EOS GmbH & Universität der Bundeswehr

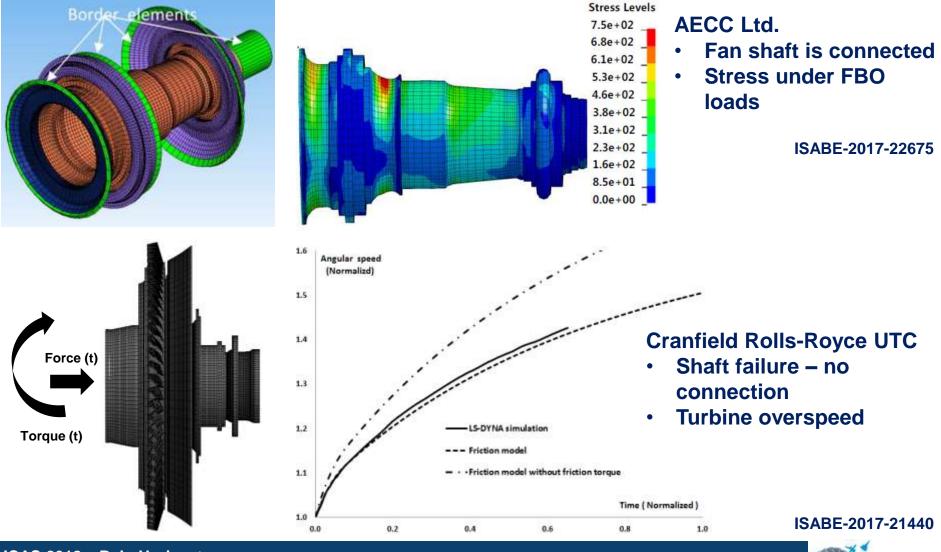
 Compressor vane with pressure probes - Additive Manufacturing, DMLS



Rolls-Royce Advance3

- Critical long lead time parts Fast Make SCUs
- Intercase cast in sub-sections and bolted
- Blisk stages machined from solid and Electron Beam welded

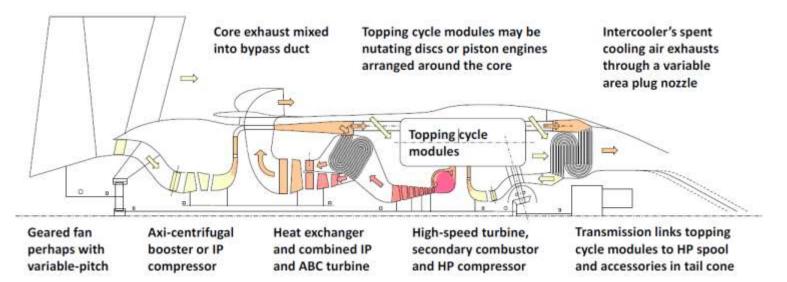
CastBond[™] HP-NGVs • Cooling capability



ISABE-2017-22705

From Presenters – Virtual Engine Design Systems

3-D transient dynamic sub-systems modelling, LS-DYNA



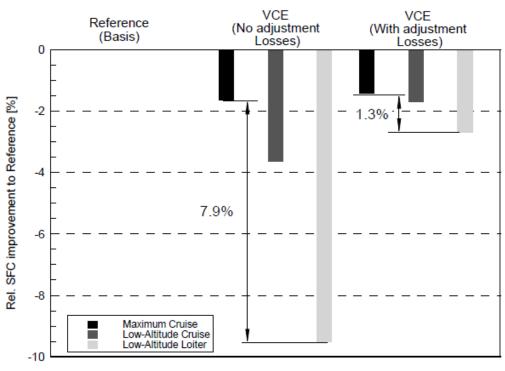
From Presenters – Cycle Innovations

Candidate technologies for year 2050 engines – qualitative assessment

- Intercooling
- Recuperation
- Variable geometry
 - VIGVs for IP and HP compressors
 - Variable pitch fan
- Secondary combustion

- Topping cycles- pressure rise combustion
 - Pulse-detonation combustors
 - Piston engines
- Bottoming cycles
 - Use the core exhaust as heat input
 - S-CO₂

Reverse flow core turbofan engine architecture with several features ISABE-2017-22660


From Presenters – Cycle Innovations

The variable cycle engine – quantitative assessment

- 3 spool mixed flow turbofan
- Variable fan IGV
- Variable compressors

- Variable turbines
- Variable mixer
- Variable nozzle

- MTU cycle code
 - Thermodynamics
- Meanline code
 - Flowpath design
- Preliminary mechanical design tool
 - Weight prediction

SFC improvement

ISABE-2017-22704

From Presenters – Noise Reduction

The NASA Aircraft Noise Reduction Subproject

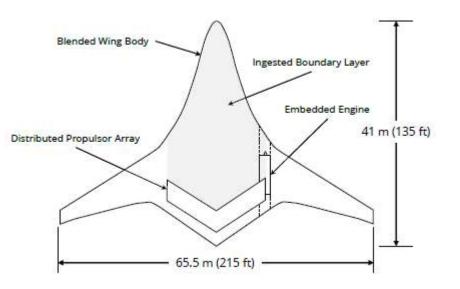
- Acoustic liner technology
- Propulsion airframe aeroacoustics

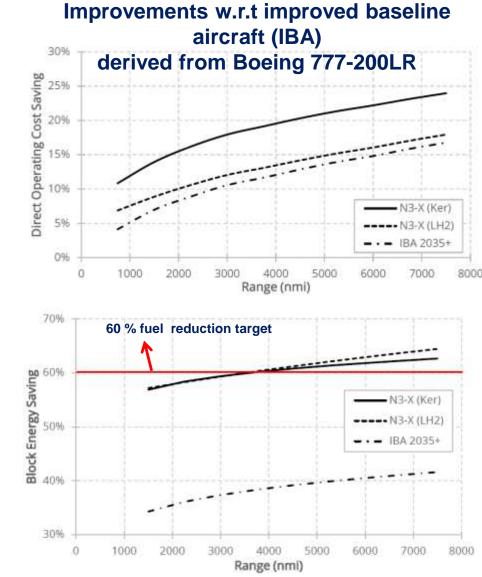
Over-The-Rotor Liner (Acoustic Casing Treatment)

- Casing grooves over the fan tip
- Groves have porosity to allow communication between unsteady flow and absorbers

Challenges

- Fan losses, already solved: to be published soon
- Fabrication


ISABE-2017-22697


From Presenters – Turbo-Electric Propulsion

Techno-economic and environmental risk assessment (TERA) of NASA's N+3-X aircraft

- TERA methodology by Cranfield
- Boundary layer ingestion
- Turbomachinery
- Aircraft performance
- Economic modelling

ISABE-2017-22535

List of References

- ISABE 2017 keynote, Ian Gray, Cranfield University AIRC
- ISABE 2017 keynote, Charles Champion, Airbus
- ISABE 2017 keynote, Jerome Bonini, Safran Aircraft Engines
- ISABE 2017 keynote, Paul Stein, Rolls-Royce plc
- ISABE 2017 keynote, Simon Weeks, Aerospace Technology Institute UK
- ISABE 2017 keynote, Jean-François Brouckaert , Clean Sky Joint Undertaking
- ISABE-2017-22536, G. Billonnet, O. Atinault and R. Grenon, Assessment of the Fan Simulation for quantifying the Boundary Layer Ingestion benefits on an Experimental Propulsion System
- ISABE-2017-22605, J.C.M. Tai, C. A. Perullo, D.N. Mavris, J. Whurr, D. Boyd, Integrated Assessment of Vehicle Architecture Tradeoffs for Variable Pitch Geared Fan Engine
- ISABE-2017-22529, S. Bindl, F. Kern, R. Niehuis, Additive Manufacturing of a Compressor Vane with Multi-Hole Pressure Probes
- ISABE-2017-22705, A.Geer, The Rolls-Royce Advance3 Project Proving our Future Core
- ISABE-2017-22675, S. Hu, X. Chai, Application of Sub-Modelling Technique for Whole Engine Transient Dynamic Analysis
- ISABE-2017-21440, I. Eryilmaz, V. Pachidis, Turbine thermomechanical modelling during excessive axial movement and overspeed
- ISABE-2017-22660, A. Rolt, C. Xisto, Selecting Combinations of Advanced Aero Engine Technologies
- ISABE-2017-22704, C. Hennig, F. Grauer, Challenges of Preliminary Aircraft Engine Design with Variable Cycle Technology
- ISABE-2017-22697, D. Van Zante, D. Nark, H. Fernandez, Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project
- ISABE-2017-22535, C. Goldberg, J. Feldery, D. Nalianda, V. Sethi, P. Pilidis, R. Singh, Turbo-electric Vehicle Study A techno-economic and environmental risk assessment of NASA's N3-X

Electric propulsion

Professor Ric Parker – Special Advisor

ICAS 2018 – Belo Horizante

© 2018 Rolls-Royce plc

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc. This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies. TotalCare® is a registered trademark, Life®, Term® and Flex® are registered in the European community. Trent® is a registered trademark.

Electrification

Hybrid Trains Micro-grids **Hybrid Ships** E-Fan X

Personal Air Taxi image © Airbus, Helicopter Replacement Image courtesy of Aurora Flight Sciences - a Boeing Company

Products	Military	Personal Mobility	Hybrid Turboprop	Helicopter Replacement	Hybrid Turbofan
			K Constanting of the second se	Last Ryar Quarters	
Driver	Capability	Capability (time)	Local Environmental Impact	Capability & Safety	Efficiency
Timing	Now	~2020s	>2025	>2025	>2030

New directions for aviation through electrical power

Rolls-Royce Electrical Property information, strictly private and confidential,

Electric Propulsion Benefits

Hybrid Electric Propulsion Transforms Aircraft Design Space Efficiency

Capability

Emissions

Zero local emissions Potentially lower levels of noise

High levels of efficiency

Allows energy-use

High level of control

Easily configurable

Propulsion airframe

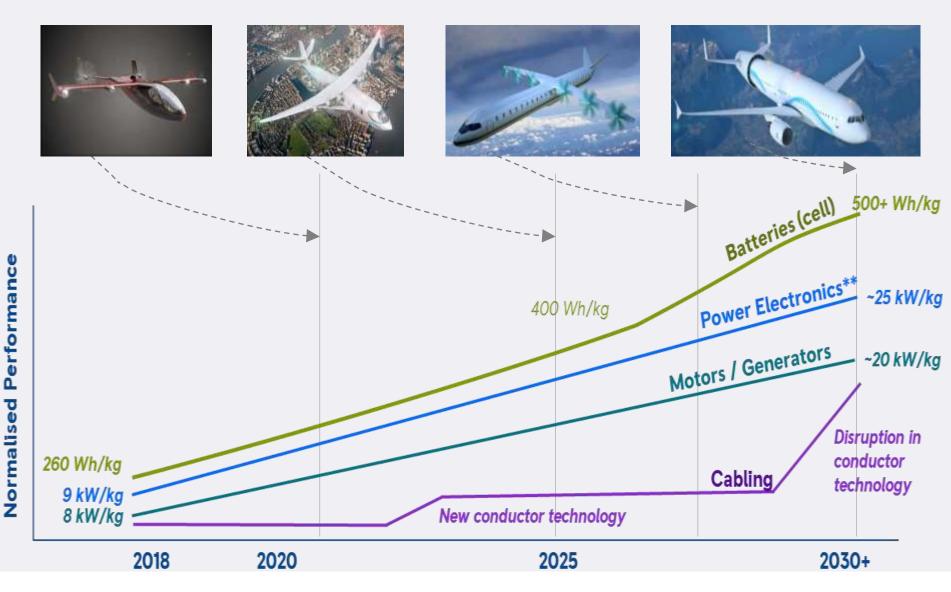
Novel architectures

optimisation

integration

Maintenance

Single engine, increased redundancy Power Management control to reduce wear ▲ Efficiency



▼ Noise

Data for "aerospace grade" technology

Growing electrical capability

Rolls-Royce Electrical Property information, strictly private and confidential.

How might it impact aviation?

Incremental (Electrification)

Disruptive (Electric propulsion)

Incremental More electric Aircraft Electrical content increasing Electrical technology advancing Electrical enhancement - BLI

Disruptive

New airframe and/or transport concepts could appear Scope of supply may change New entrants may appear in market

Disruption in short/medium travel.

20-100 pax

Rolls-Royce Electrical Property information, strictly private and confidential.

		Short Range	Medium Range		
1-4 pax	Personal Transport	Time Saver			
		Congestion Beater	Convenience Option		
4-20 рах		VTOL unlocks new Markets			
	Regiona I VTOL	Local Commuter	Potential to take share of small business jet		
			market		
0-100 рах	Regional Hybrid	Alternative to rail and current aircraft			
		Economic advantage over new Rail Infrastructure			

Ability to operate closer to destination

Disruption in short/medium travel.

A shift in transport mode Enabling innovative civil aerospace and defence operations

Rolls-Royce Electrical Property information, strictly private and confidential,

- Reduced operating cost
- Reduced emissions
- Reduced aircraft noise

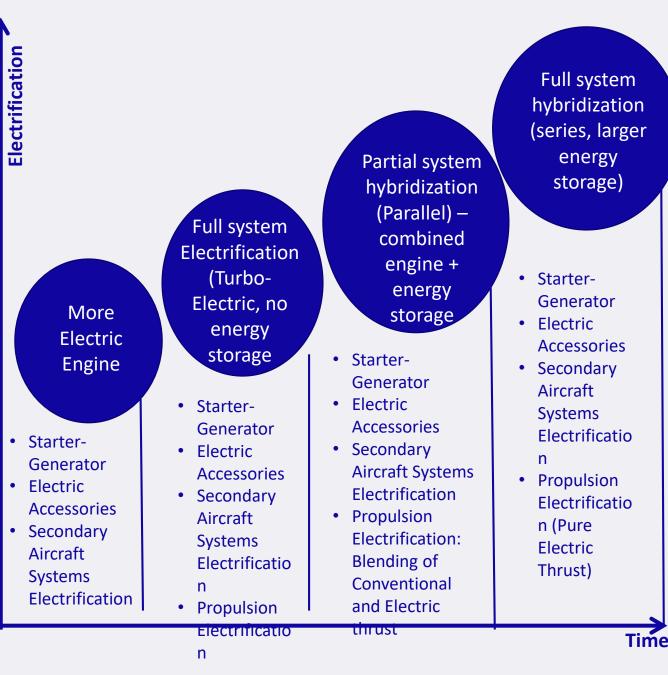
- Flexibility in vehicle propulsion integration
- Flexibility to energy source

It's not just about the airplane... subsidies **Digital ticketing** New physical and cyber security systems Minimalist city airport design Security pre-clearance Ground Infrastructure Dynamic air traffic management Single pilot operation Mobility as a service New aircraft types (STOL, low noise)

New policies on transportation

Ð

Rolls-Royce Electrical Property information, strictly private and confidential.

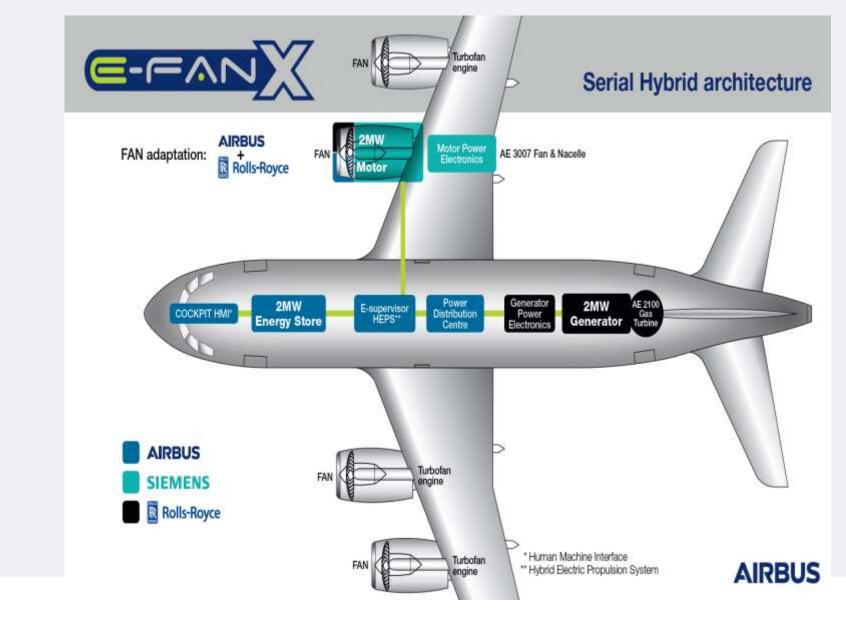


Technology Development

Rolls-Royce Electrical – Hybrid Technologies

- Parallel Hybrid
- Series Hybrid
- Turbo-electric distributed propulsion

Focus on Technology Advancement and Demonstrators for Early Product Opportunities


Electrically enhanced larger aircraft – aft body BLI*

*Boundary Layer Ingestion

Rolls-Royce Electrical Property information, strictly private and confidential.

Hybrid short-range regional aircraft

Hybrid regional demonstrator Airbus, Roll-Royce Siemens

E-Thrust

Hybrid MoM Airbus, Rolls-Royce

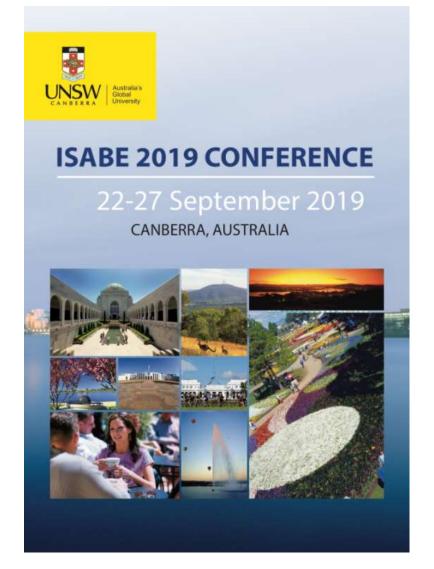
Key challenges

Electric and Hybrid Electric propulsion are poised to reshape the aerospace industry

Rolls-Royce Electrical Property information, strictly private and confidential,

Systems Integration

The ability to integrate mechanical, electrical and thermal systems


- Safety & certification
- Electro mechanical integration
- Cooling
- Control
- Corona discharge

Component Technology

The ability to design high performance, high integrity components

- Lightweight, high power density machines
- High temperature electrical materials
- Fault tolerant power electronics

Next Conference – ISABE 2019, Canberra

